

MATH 031: Calculus III

Term: 2020 Winter Session Instructor: Staff Language of Instruction: English Classroom: TBA Office Hours: TBA Class Sessions Per Week: 5 Total Weeks: 3 Total Class Sessions: 15 Class Session Length (minutes): 240 Credit Hours: 4

Course Description:

In this course, students will discuss and explore topics including: Vectors, lines, planes; Multiple integration; Cylindrical and spherical coordinates; Functions of several variables: partial derivatives, gradients, chain rule, directional derivative, maxima/minima; Scalar and vector fields, potentials, approximation, multivariate minimization; Derivatives of vector valued functions, velocity and acceleration; Stokes's and related theorems; Green's theorem. Prerequisite: MATH 021 or equivalent 2nd year calculus course.

Course Materials:

Essential Calculus: Early Transcendentals, James Stewart, 2nd edition

Course Format and Requirements:

This course has 15 class sessions in total. Each class session is 240 minutes in length.

Please do not use electronic devices such as phones, iPads, computers, etc. during the lectures.

Attendance

Students are expected to attend and participate in class. Strong attendance and participation are good indicators of success. Each student is responsible for all course material, announcements, quizzes and exams made in class, whether or not the student attended that day's class.

Grading Scale:

A+: 98%-100% A: 93%-97% A-: 90%-92% B+: 88%-89% B: 83%-87% B-: 80%-82% C+: 78%-79% C: 73%-77% C: 70%-72% D+: 68%-69% D: 63%-67% D-: 60%-62% F: Below 60%

Course Assignments:

Quizzes

There will be 5 quizzes administered through the whole semester. Quizzes will always be completed in the first ten minutes of class. The quiz problems will be similar to homework problems and in-class examples. There will be no make-up quizzes.

Midterm Exams

There will be two midterm exams in this course. The midterm exam will be based on concepts covered in class. It will be in-class, close-book and non-cumulative.

Final Exam

The final will be cumulative and close-book. Note that the final will not be taken during the normal class times. Exact time and location for final will be announced later.

Course Assessment:

Quizzes	15%
Midterm Exams 1	25%
Midterm Exams 2	25%
Final Exam	35%
Total	100%

Course Schedule:

Week 1- Class 1	Week 1- Class 2
Go through Syllabus	Cross product
R^n as a vector space	Functions of a single variable
Dot product, angles and orthogonal projection	Linear Subspaces
Lines, planes, and hyperplanes	Multivariable functions
	Curves
	<u>Quiz 1</u>
Week 1- Class 3	Week 1- Class 4
Arc Length	Differentiation rules
Graphing surfaces	Directional derivatives
Partial derivatives	Level sets and gradient vectors
Linear approximation, tangent planes, and the	Parameterizing surfaces
differential	
Week 1- Class 5	Week 2- Class 6
Local extrema	Lagrange multipliers
Extreme Values and Saddle Points	Iterated integrals
<u>Midterm exam 1</u>	Double Integrals
	Optimization
	<u>Quiz 2</u>
Week 2- Class 7	Week 2- Class 8
Polar coordinates	<u>Quiz 3</u>
Area and Double Integrals in Polar Form	Cylindrical and spherical coordinates

Triple Integrals in Rectangular Coordinates	Density and mass
Volume	
Week 2- Class 9	Week 2- Class 10
Triple Integrals in Cylindrical and Spherical	Vector fields
Coordinates	<u>Midterm exam 2</u>
Surfaces and area	
Week 3- Class 11	Week 3- Class 12
Integration in Vector Fields	Conservative vector fields
Line integrals	Potential Functions
Path Independence	<u>Quiz 4</u>
Week 3- Class 13	Week 3- Class 14
Green's Theorem	Quiz 5
Flux through a surface	The Divergence Theorem
	Stokes' Theorem
Week 3- Class 15	
Summary of Course	Final Exam (Cumulative): TBA
Revision	

Academic Integrity:

Students are encouraged to study together, and to discuss lecture topics with one another, but all other work should be completed independently.

Students are expected to adhere to the standards of academic honesty and integrity that are described in the Shanghai Normal University's *Academic Conduct Code*. Any work suspected of violating the standards of the *Academic Conduct Code* will be reported to the Dean's Office. Penalties for violating the *Academic Conduct Code* may include dismissal from the program. All students have an individual responsibility to know and understand the provisions of the *Academic Conduct Code*.

Special Needs or Assistance:

Please contact the Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material. Our goal is to help you learn, not to penalize you for issues which mask your learning.