

MATH 026: Linear Algebra

Term: 2020 Winter Session

Instructor: Staff

Language of Instruction: English

Classroom: TBA
Office Hours: TBA

Class Sessions Per Week: 6

Total Weeks: 4

Total Class Sessions: 25

Class Session Length (minutes): 145

Credit Hours: 4

Course Description:

This course addresses matrix algebra and solution of linear systems. Topics covered in this course include: Gaussian elimination, fundamental theory, row-echelon form; Computer methods. Vector spaces, subspaces, bases and linear independence, dimension, column spaces, null spaces, rank and dimension formula; Orthogonality, orthonormal sets, Gram-Schmidt orthogonalization process, least square approximation; Eigenvalues and eigenvectors, diagonalization of matrices, linear transformations, determinants; Diagonalization; The real and complex number fields.

Prerequisite: MATH 021 or equivalent 2nd year calculus course.

Course Materials:

Linear Algebra and Its Applications, David C Lay, 5th edition.

Course Format and Requirements:

This course has 25 class sessions in total. Each class session is 145 minutes in length. Please do not use electronic devices such as phones, iPads, computers, etc. during the lectures.

Attendance

Students are expected to attend and participate in class. Missing class is the most common reason for poor performance in the course. If you miss a class, you are responsible for obtaining notes

for that class from a student who attended. It is also your responsibility to find out about any announcements made in class.

Grading Scale:

A+: 98%-100%

A: 93%-97%

A-: 90%-92%

B+: 88%-89%

B: 83%-87%

B-: 80%-82%

C+: 78%-79%

C: 73%-77%

C-: 70%-72%

D+: 68%-69%

D: 63%-67%

D-: 60%-62%

F: Below 60%

Course Assignments:

Ouizzes

There will be 6 quizzes administered through the whole semester. Quizzes will always be completed in the first ten minutes of class. The quiz problems will be similar to homework problems and in-class examples. There will be no make-up quizzes.

Midterm Exams

There will be two midterm exams in this course. The midterm exam will be based on concepts covered in class. It will be in-class, close-book and non-cumulative.

Final Exam

The final will be cumulative and close-book. Note that the final will not be taken during the normal class times. Exact time and location for final will be announced later.

Course Assessment:

Quizzes	15%
---------	-----

Midterm Exams 1	25%
Midterm Exams 2	25%
Final Exam	35%
Total	100%

Course Schedule:

Week 1- Class 1	Week 1- Class 2
Introduction to course	Systems of linear equations
Go through Syllabus	Matrix of a system
Review on calculus, trigonometry and algebra	
Week 1- Class 3	Week 1- Class 4
Elementary row operations	Quiz 1
Row echelon form	Gaussian elimination
	Matrix algebra
Week 1- Class 5	Week 1- Class 6
Matrix multiplication	Quiz 2
Properties of Matrix multiplication	Elementary matrices
	Determinant of a matrix
Week 2- Class 7	Week 2- Class 8
Properties of determinants	Computing determinants using Gaussian
Computing determinants using Gaussian	elimination (Cont.)
elimination	Review for Midterm 1
Week 2- Class 9	Week 2- Class 10
Midterm exam 1	Vector spaces
	Subspaces
Week 2- Class 11	Week 2- Class 12
Linear independence	Change of basis
Basis and dimension	Transition matrix

Week 3- Class 13	Week 3- Class 14
Quiz 3	Linear transformations
Row space and column space	Dentitions and examples
Applications to systems of linear equations	
Week 3- Class 15	Week 3- Class 16
Quiz 4	Similarity, changes of basis for a linear
Image and Kernel	transformation
Matrix representations of linear	Orthogonality
transformations	
Week 3- Class 17	Week 3- Class 18
Quiz 5	Orthogonal Projections:
Orthogonal Projections:	Orthonormal sets
The scalar product in R^n	Review for Midterm 2
Inner product spaces	
Week 4- Class 19	Week 4- Class 20
Midterm exam 2	The Gram-Schmidt orthogonalization process
	Eigenvalues and eigenvectors
Week 4- Class 21	Week 4- Class 22
Diagonalization	Exponent of a matrix(cont.)
Exponent of a matrix	Orthogonal polynomials
Week 4- Class 23	Week 4- Class 24
Quiz 6	Trigonometric polynomials
Dynamical Systems	Fourier transform
Complex Eigenvalues	
Week 4- Class 25	Final Exam (Cumulative): TBA
Summary of Course	
Review for Final	

Academic Integrity:

Students are encouraged to study together, and to discuss lecture topics with one another, but all other work should be completed independently.

Students are expected to adhere to the standards of academic honesty and integrity that are described in the Shanghai Normal University's *Academic Conduct Code*. Any work suspected of violating the standards of the *Academic Conduct Code* will be reported to the Dean's Office. Penalties for violating the *Academic Conduct Code* may include dismissal from the program. All students have an individual responsibility to know and understand the provisions of the *Academic Conduct Code*.

Special Needs or Assistance:

Please contact the Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material. Our goal is to help you learn, not to penalize you for issues which mask your learning.