

PHYS 011: General Physics I

Term: 2020 Winter Session

Instructor: Staff

Language of Instruction: English

Classroom: TBA
Office Hours: TBA

Class Sessions Per Week: 6

Total Weeks: 4

Total Class Sessions: 25

Class Session Length (minutes): 145

Credit Hours: 4

Course Description:

This course studies the basic theories and principles of physics. Topics covered include Newton's laws; gravitation; mechanics, kinematics; energy and momentum conservation, rotational motion, and angular momentum conservation; simple harmonic motion; mechanical waves; fluids; ideal gas law; heat and the first and second laws of thermodynamics. Atomic and nuclear physics, and relativity are discussed as well. This is a calculus-based physics course.

Course Materials:

Fundamentals of Physics, Volume 1 (Chapter 1 - 20), David Halliday, Robert Resnick, Jearl Walker, 10th edition.

Course Format and Requirements:

Attendance:

Students are expected to attend and participate in class. Strong attendance and participation are good indicators of success. Each student is responsible for all course material, announcements, quizzes and exams made in class, whether or not the student attended that day's class.

Grading Scale:

A+: 98%-100%

A: 93%-97%

A-: 90%-92%

B+: 88%-89%

B: 83%-87%

B-: 80%-82%

C+: 78%-79%

C: 73%-77%

C-: 70%-72%

D+: 68%-69%

D: 63%-67%

D-: 60%-62%

F: Below 60%

Course Assignments:

Quizzes

There will be 6 quizzes administered through the whole semester and the LOWEST score will be dropped. Quizzes will always be completed in the first ten minutes of class. The quiz problems will be similar to homework problems and in-class examples. There will be no make-up quizzes.

Midterm Exams

There will be two midterm exams in this course. The midterm exam will be based on concepts covered in class. It will be in-class, close-book and non-cumulative.

Final Exam

The final will be cumulative and close-book. Note that the final will not be taken during the normal class times. Exact time and location for final will be announced later.

Course Assessment:

Quizzes (5 out of 6)	20%
Midterm Exams 1	20%
Midterm Exams 2	20%
Final Exam	40%
Total	100%

Course Schedule:

Week 1- Class 1	Week 1- Class 2
Introduction to the course	Continued topics on 1D motion
Basic units	Idea of vectors
One-dimensional motion	Scalar VS. Vector:
	Speed & Velocity
	Displacement and Distance
	2D motions
Week 1- Class 3	Week 1- Class 4
Quiz 1	Newton's laws: first law
3D motions	Understand idea of force and motion
Newton's laws: first law	Newton's laws: second law
Understand idea of force and motion	Acceleration, velocity and displacement
Week 1- Class 5	Week 1- Class 6
Newton's laws: second law	Quiz 2
Centripetal acceleration	Newton's law: third law
	Friction: static friction, sliding friction and
	rolling friction
	Normal Force
Week 2- Class 7	Week 2- Class 8
Work	<u>Midterm 1</u>
Idea of negative work	Potential energy:
Into to Potential energy	Elastic Potential energy
	Gravitational Potential energy
Week 2- Class 9	Week 2- Class 10
Equation of Conservation of energy	Linear momentum
Center of mass	Conservation of linear momentum
How to find the Centroid	Linear momentum
	l l

	Different types of collisions
Week 2- Class 11	Week 2- Class 12
Quiz 3	Conservation of linear momentum
Conservation of linear momentum	Impulse
Apply equations of momentum conservation	
and energy conservation to model	
elastic/inelastic collision	
Week 3- Class 13	Week 3- Class 14
Average force	<u>Quiz 4</u>
Intro to Rotation	Angular Velocity
Angular Displacement	Angular Acceleration
	Angular Displacement
	Angular Velocity
Week 3- Class 15	Week 3- Class 16
Angular Acceleration	Torque
Topics on rigid body dynamics: angular	Angular momentum
acceleration, angular velocity and centripetal	Apply conservation of angular momentum
acceleration	Equilibrium
Week 3- Class 17	Week 3- Class 18
Midterm 2	Quiz 5
Statics and Free Body Diagram	Gravitational force
Gravitational Force	Back to gravitational potential energy
	More type of energy: intro to heat and
	thermodynamics
Week 4- Class 19	Week 4- Class 20
First law	Finish topics on fluids: Buoyancy
Second First law of thermodynamics	Simple Harmonic Motion
Ideal gas law	
Fluids: Hydrostatics	

Week 4- Class 21	Week 4- Class 22
Oscillations	Waves on strings
Wave Dynamics:	Sound waves
Waves on strings	Beats and doppler effect
Week 4- Class 23	Week 4- Class 24
Quiz 6	Atomic and nuclear physics
Sound waves	The Rutherford–Bohr model
Beats and doppler effect	Isolated atoms
	Fission & Fusion
	History and developments of atomic theory
Week 4- Class 25	Final Exam (Cumulative): TBA
Relativity	
Time, length and velocity under special	
relativity	

Academic Integrity:

Students are encouraged to study together, and to discuss lecture topics with one another, but all other work should be completed independently.

Students are expected to adhere to the standards of academic honesty and integrity that are described in the Shanghai Normal University's *Academic Conduct Code*. Any work suspected of violating the standards of the *Academic Conduct Code* will be reported to the Dean's Office. Penalties for violating the *Academic Conduct Code* may include dismissal from the program. All students have an individual responsibility to know and understand the provisions of the *Academic Conduct Code*.

Special Needs or Assistance:

Please contact the Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material. Our goal is to help you learn, not to penalize you for issues which mask your learning.